

Course Instructor Dr. Raymond C. Rumpf Office: A-337 Phone: (915) 747-6958 E-Mail: rcrumpf@utep.edu

Maxwell's Equations:

Physical Interpretation

EE-3321 Electromagnetic Field Theory

Physical Meaning of Maxwell's Equations:

Gauss' Law for Magnetic Fields

Gauss' Law for Magnetic Fields in Differential Form

If the surface S and volume V describe the same space, the argument of both integrals must be equal. Setting these arguments equal gives Gauss' law for magnetic fields in differential form.

$$Q_{\rm m} = \iiint_{V} \left(\nabla \bullet \vec{B} \right) dv = \iiint_{V} \rho_{\rm m} dv$$
$$\nabla \bullet \vec{B} = \rho_{\rm m}$$

However, there is no magnetic charge so $\rho_{\rm m} = 0$.

$$\nabla \bullet \vec{B} = 0$$

Maxwell's Equations -- Physical Interpretation

Physical Meaning of Maxwell's Equations:

Faraday's Law

Physical Meaning of Maxwell's Equations: *Ampere's Circuit Law*

Physical Meaning of Maxwell's Equations: *Constitutive Relations*

Ordinary and Bi- Materials		
	Ordinary Materials	Bi- Materials
als	Isotropic Materials	Bi-Isotropic Materials
/ateri	$\vec{D} = \varepsilon \vec{E}$	$\vec{D} = \varepsilon \vec{E} + \xi \vec{H}$
opic N	$\vec{B} = \mu \vec{H}$	$\vec{B} = \xi \vec{E} + \mu \vec{H}$
lsotr		$\xi \equiv$ magnetoelectric coupling coefficient
ials	Anisotropic Materials	Bi-Anisotropic Materials
Mater	$\vec{D} = [\varepsilon]\vec{E}$	$\vec{D} = [\varepsilon]\vec{E} + [\xi]\vec{H}$
tropic	$\vec{B} = [\mu]\vec{H}$	$\vec{B} = [\mathcal{E}]^{\mathrm{T}} \vec{E} + [\mu] \vec{H}$
Aniso		
Maxwell's Equations Physical Interpretation		