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Maxwell’s Equations:
Physical Interpretation

EE-3321

Electromagnetic Field Theory
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Outline

• Maxwell’s Equations

• Physical Meaning of Maxwell’s Equations
– Gauss’ law

– Gauss’ law for magnetic fields

– Faraday’s law

– Ampere’s circuit law

– Constitutive relations
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Forms of  Maxwell’s Equations
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Most general form

Most common form

Physical Meaning of 
Maxwell’s Equations:

Gauss’ Law
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Fields & Charges (1 of  2)
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Electric field lines diverge 
from positive charges.

The electric field induced by charges is best described by the electric flux 
density D because this quantity is most closely associated with charge.

Electric field lines converge 
on negative charges.

24

Q
D

r



…or both!

Fields & Charges (2 of  2)
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Small charge

The magnitude of the charge is usually conveyed by the density of the field 
lines.

Large charge
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A Note About Field Lines
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It is in some ways misleading to draw electric field lines 
because it incorrectly implies that the field exists at some points 
but not others.

 exists hereD


...but not here

The electric field is a smooth and 
continuous phenomenon, but that 
is hard to convey in a diagram.

How to Calculate Total Charge Q

Maxwell's Equations -- Physical Interpretation Slide 8

Method 1:  Surface integral of electric flux
Since the density of field lines convey the amount of charge, it makes sense 
that we can calculate the total charge Q enclosed within a surface S by 
integrating the flux of the field lines at the surface.

Q

1S

2S

1 2S S

Q D ds D ds    
   

The choice of surface S does not matter 
as long as the surface completely 
encloses the charge.  Usually the shape 
of the surface is chosen to make the 
math as simple as possible.

D ds
 
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How to Calculate Total Charge Q

Maxwell's Equations -- Physical Interpretation Slide 9

Method 2:  Volume integral of electric charge density
The total charge Q can be calculated by integrating the electric charge 
density v within a volume V that completely encompasses the charge.

Q

1V
2V

1 2

v v

V V

Q dv dv   

The choice of volume V is the same as the 
choice of the surface for Method 1.  the 
shape does not matter as along it 
completely encompasses the charge.  It is 
usually chosen for mathematical 
convenience.

1

v

V

dv

Gauss’ Law in Integral Form

Maxwell's Equations -- Physical Interpretation Slide 10

Both methods calculate the same total charge so they can be 
set equal.

v

S V

Q D ds dv   
 

Method 1 Method 2
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D ds
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dv
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Apply Divergence Theorem
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The divergence theorem allows us to write a closed-contour 
surface integral as a volume integral.

 
S V

A ds A dv   
 

Applying this to Gauss’ law gives us
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Gauss’ Law in Differential Form
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If the surface S and volume V describe the same space, the 
argument of both integrals must be equal.  Setting these 
arguments equal gives Gauss’ law in differential form.

  v

V V

Q D dv dv   


vD  

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Physical Meaning of 
Maxwell’s Equations:

Gauss’ Law for 
Magnetic Fields

No Magnetic Charge

Maxwell's Equations -- Physical Interpretation Slide 14

Since there exists no isolated magnetic charge, the magnetic 
field cannot have a beginning or an end.  The magnetic field 
can only form loops.

B


B

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Prove Zero Magnetic Charge

Maxwell's Equations -- Physical Interpretation Slide 15

Surface integral of magnetic flux
Following what we did for electric fields, we calculate total magnetic charge 
enclosed within a surface S by integrating the flux of the magnetic field lines 
at the surface.

0
S

B ds 
 

B


B


B ds
 

No flux lines 
through surface.

Qm = 0
Flux adds to zero.

Qm = 0

Gauss’ Law for Magnetic Fields in 
Integral Form

Maxwell's Equations -- Physical Interpretation Slide 16

The result from last slide is Gauss’ law for magnetic fields.

0
S

B ds 
 
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Apply Divergence Theorem
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The divergence theorem allows us to write a closed-contour 
surface integral as a volume integral.

 
S V

A ds A dv   
 

Applying this to Gauss’ law for magnetic fields gives us
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m m
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Gauss’ Law for Magnetic Fields in 
Differential Form
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If the surface S and volume V describe the same space, the 
argument of both integrals must be equal.  Setting these 
arguments equal gives Gauss’ law for magnetic fields in 
differential form.

 m m

V V

Q B dv dv   


mB  


0B 


However, there is no magnetic charge so m = 0.
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Physical Meaning of 
Maxwell’s Equations:

Faraday’s Law

Faraday’s Experiment
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Observations:

1. The more (or stronger) the 
magnetic flux, the higher the 
voltage reading.

2. The more turns of the loop, the 
higher the voltage reading.

3. The faster the time rate of change 
of the magnetic flux, the higher the 
voltage reading.

emf         
S

V B ds   
 

emf         # turnsV N N 

emf

d
V

dt



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Calculate Induced Voltage (1 of  2)
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Method 1:  By experiment.
Faraday performed an experiment and determined that

emf

d
V N

dt


 

The total magnetic flux  accounting for the number of turns  is

S

N B ds  
 

Combing the above equations leads an expression for VEMF in terms of just 
the magnetic flux density B.

 emf

S S

d d B
V N N B ds ds

dt dt t t

 
  

            
 

  

magnetic flux 

Flux linkage is a property of a two-terminal device.  It is not 
equivalent to flux.  Flux can exist without the loop.  Further, if 
the loops do not have the same orientation, they will not 
“link” to the magnetic field the same.

Flux and flux linkage are not the same thing, but often used 
synonymously because most devices are designed so that 
each loop links the same to the magnetic field and the math
reduces to them being nearly equivalent.

magnetic flux linkageN 

Calculate Induced Voltage (2 of  2)

Maxwell's Equations -- Physical Interpretation Slide 22

Method 2:  Use Kirchoff’s voltage law
The voltage across the terminals of the resistor can be calculated using 
Kirchoff’s voltage law.  For electromagnetics, Kirchoff’s voltage law becomes 
a line integral.  Assuming the resistor is very small compared to the loop, we 
get

emf           
L

V E d V E   

 
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Faraday’s Law in Integral Form
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Both methods calculate the same voltage so they can be set 
equal.

emf

L S

B
V E d ds

t

 
      
 

 

Method 2 Method 1

Apply Stoke’s Theorem

Maxwell's Equations -- Physical Interpretation Slide 24

Stoke’s theorem allows us to write a closed-contour line 
integral as a surface integral.

 
L S

A d A ds    
   

Applying this to Faraday’s law in integral form gives us

 
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B
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V E ds ds

t

 
      



 
       

 

 

 

  


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Faraday’s Law in Differential Form

Maxwell's Equations -- Physical Interpretation Slide 25

If the line L and surface S describe the same space, the 
argument of both integrals must be equal.  Setting these 
arguments equal gives Faraday’s law in differential form.

 emf

S S

B
V E ds ds

t

 
       
 

  

B
E

t


  





Physical Meaning of 
Maxwell’s Equations:

Ampere’s Circuit Law
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Ampere’s Experiment
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Observations:

1. There exists a circulating 
magnetic field H around a 
conductor carrying a current I.

2. The current I can induce the 
magnetic field H, or the magnetic 
field H can induce the current I.

3. The measured current I is in 
proportion to the circulation of H.

L

I H d 



Three Types of  Current

Maxwell's Equations -- Physical Interpretation Slide 28

total

S

I J ds 
 

The total current I can be calculated by integrating the flux of 
the electric current density J through a cross section of the 
conductor.

However, recall that there are three types of electric current.

total D

J

J J J J   


   
 displacement currentD

D
J

t


 




current due to free chargesJ 


Putting this together gives

S

D
I J ds

t

 
    


 
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Ampere’s  Circuit Law in 
Integral Form

Maxwell's Equations -- Physical Interpretation Slide 29

L S

D
I H d J ds

t

 
      
 

  

Ampere’s 
Experiment

Simple integration 
of current density

We have two ways of calculating the total current I in a 
conductor.  Setting these equal gives…

Apply Stoke’s Theorem
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Stoke’s theorem allows us to write a closed-contour line 
integral as a surface integral.

 
L S

A d A ds    
   

Applying this to Ampere’s law in integral form gives us

 

         

               

L S

S S

D
I H d J ds

t

D
I H ds J ds

t

 
      



 
       

 

 

  

  


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Ampere’s Circuit Law in 
Differential Form
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If the line L and surface S describe the same space, the 
argument of both integrals must be equal.  Setting these 
arguments equal gives Ampere’s circuit law in differential form.

 
S S

D
I H ds J ds

t

 
       
 

  

D
H J

t


  



 

Visualization of  Ampere’s Circuit 
Law in Differential Form

Maxwell's Equations -- Physical Interpretation Slide 32

D
H J

t


  



 
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Physical Meaning of 
Maxwell’s Equations:

Constitutive Relations

Electric Response of  Materials

Maxwell's Equations -- Physical Interpretation Slide 34

 0ED P 
 

Vacuum response Material response

Note: 0 is the free 
space permittivity 
and multiples E so 
that 0E has the 
same units as P.
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Electric Polarization

Maxwell's Equations -- Physical Interpretation Slide 35

In general, the relation between the applied electric field E and 
the electric polarization P is nonlinear so it can be expressed as 
a polynomial.

     2 32 3
0 e 0 e

1
0 e EP E E     
Linear 

response
Nonlinear response

These terms are usually ignored. 
They tend to only become significant 
when the electric field is very strong.

 

 

2
e

2
e

 is pronounced "chi two"

 is pronounced "chi three"






   e electric susceptibility no unitsn 

Electric Permittivity & Susceptibility

Maxwell's Equations -- Physical Interpretation Slide 36

The permittivity is related to the electric susceptibility through

0 rD E 
 

 1
r e1  

Vacuum response Dielectric response

    1 1
0 0 0 e 0 e1D E P E E E          

     

The constitutive relation can 
also be written in terms of 
the relative permittivity r.
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Magnetic Response of  
Materials

Maxwell's Equations -- Physical Interpretation Slide 37

 0HB M 
 

Vacuum response Material response

Note: 0 is the free 
space permeability 
and multiples H so 
that 0H has the 
same units as M.

Magnetic Polarization

Maxwell's Equations -- Physical Interpretation Slide 38

In general, the relation between the applied magnetic field H
and the magnetic polarization M is nonlinear so it can be 
expressed as a polynomial.

     2 32 3
0 m 0 m

1
0 m HM H H      
Linear 

response
Nonlinear response

These terms are usually ignored. 
They tend to only become significant 
when the electric field is very strong.

 

 

2
m

2
m

 is pronounced "chi two"

 is pronounced "chi three"






   m magnetic susceptibility no unitsn 
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Magnetic Permeability & Susceptibility

Maxwell's Equations -- Physical Interpretation Slide 39

The permeability is related to the magnetic susceptibility 
through

    1 1
0 r 0 0 m 0 m1B E H H H          

    

 1
r m1  

Vacuum response Magnetic response

Types of  Magnetic Materials

• Diamagnetic
– Negative magnetic susceptibility (m < 0)

– Tends to oppose an applied magnetic field.

– All materials are diamagnetic, but usually very week.

– Copper, silver, gold

• Paramagnetic
– Small positive susceptibility (m > 0 but small)

– Material is magnetizable and is attracted to an applied magnetic field.

– Does not retain magnetization when the external field is removed.

• Ferromagnetic
– Large positive susceptibility

– Like paramagnetic, but they retain their magnetism to some degree 
when the external field is removed.

– Iron, nickel, cobalt, and some allows.

Maxwell's Equations -- Physical Interpretation Slide 40
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Anisotropy

Maxwell's Equations -- Physical Interpretation Slide 41

The dielectric response of a material arises due to the electric 
field displacing charges.

Due to structural and bonding effects at the atomic scale, 
charges are often more easily displaced in some directions than 
others.  

This gives rise to anisotropy where the electric field may 
experience an entirely different permittivity depending on what 
direction it is oriented.

 D E
 

 

x xx xy xz x

y yx yy yz y

z zx zy zz z

D E

D E

D E



  
  
  

    
         
        tensor

ij = how much of Ej
contributes to Di

Types of  Anisotropy (1 of  2)
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Isotropic Media

0 0

0 0

0 0

a a

b b

c c

D E

D E

D E






     
          
          

Uniaxial Media

o

o

e

0 0

0 0

0 0

a a

b b

c c

D E

D E

D E






     
          
          

Biaxial Media

0 0

0 0

0 0

a a a

b b b

c c c

D E

D E

D E






     
          
          

This is the typical approximation made in 
electromagnetics.  The permittivity tensor 
reduces to a scalar.

D E
 

Anisotropic materials are said to be birefringent.

e o     o

e

ordinary permittivity

extraordinary permittivity






Positive birefringence:   0

Negative birefringence:  0




 
 

When orientation is not important, it so 
convention to order the tensor elements 
according to a b c   
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Doubly Anisotropic

        and     D E B H  
   

Chiral Materials

0

0

0 0

a a b a

b b a b

c c c

D j E

D j E

D E

 
 



     
          
          

Gyroelectric

0

0

0 0

a a b a

b b a b

c c c

B j H

B j H

B H

 
 



     
          
          

Gryomagnetic

Ordinary and Bi- Materials
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D E

B H









 
 

Isotropic Materials Bi-Isotropic Materials

Anisotropic Materials Bi-Anisotropic Materials

 
 

D E

B H









 

 

D E H

B E H

 

 

 

 

  
  

   
   T

D E H

B E H

 

 

 

 

  

  

magnetoelectric coupling coefficient 


