EE 4347
Applied Electromagnetics

Topic 4f

Multi Segment Transmission Line Devices

Lecture Outline

• Quarter-Wave Transformer
• Impedance Matching
• Stubs
• Scattering Parameters
Quarter-Wave Transformer

A quarter-wave transformer is a section of line that is a $\lambda/4$ long.

When the length of the line is $\lambda/4$, then we have

$$\beta \ell = \frac{2\pi}{\lambda} \cdot \frac{\lambda}{4} = \frac{\pi}{2}$$

This means the signal accumulates 90° of phase. When told a TL is $\lambda/4$, usually no other information is needed.

When this is the case, our impedance transformation equation reduces to

$$Z_{in}(-\ell) = Z_0 \frac{Z_L + jZ_0 \tan(\beta \ell)}{Z_0 + jZ_L \tan(\beta \ell)} = Z_0 \frac{Z_L + jZ_0 \tan(\pi/2)}{Z_0 + jZ_L \tan(\pi/2)}$$

$$= Z_0 \frac{Z_L + jZ_0 \cdot \infty}{Z_0 + jZ_L \cdot \infty} \quad \tan(\pi/2) = \infty.$$
Quarter-Wave Transformer (2 of 2)

Since both the numerator and denominator are ∞, we must apply L’Hopital’s rule.

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{f'(x_0)}{g'(x_0)}$$

Applying this to our impedance transformation equation, we get

$$Z_{\text{in}}(-\ell) = \lim_{\beta \to \frac{\pi}{4}} \frac{Z_L + jZ_0 \tan(\beta \ell)}{Z_0 + jZ_L \tan(\beta \ell)}$$

$$= \frac{Z_0}{Z_L}$$

The final equation shows that the load impedance Z_L gets completely inverted. The input impedance becomes the input admittance.

$$Z_{\text{in}}(-\frac{\lambda}{4}) = \frac{Z_0^2}{Z_L}$$
Impedance Inversion (2 of 5)

- Generator
- Quarter-Wave Transmission Line
- Capacitive Load

\[z = -\lambda/4 \]

- Generator
- Input Impedance is Inductive

\[\frac{V_g}{Z_g} \quad Z_{in} \quad \gamma, Z_0 \quad C \]

\[L \]

\[z = -\lambda/4 \]

- Capacitors look like inductors!

\[Z_{in} \text{ of Quarter-Wave Line} \]
\[Z_{in} = \frac{Z_0^2}{Z_L} \]

Equivalent Inductance
\[L = CZ_0^2 \]

Impedance Inversion (3 of 5)

- Generator
- Quarter-Wave Transmission Line
- Short-Circuit Load

\[z = -\lambda/4 \]

- Generator
- Input Impedance is an open circuit.

\[\frac{V_g}{Z_g} \quad Z_{in} \quad \gamma, Z_0 \quad Z_L = 0 \]

\[z = -\lambda/4 \]

- Short circuits look like open circuits!

\[Z_{in} \text{ of Quarter-Wave Line} \]
\[Z_{in} = \frac{Z_0^2}{Z_L} = \infty \]
Impedance Inversion (4 of 5)

Input Impedance is a short circuit.

Input Impedance is a short circuit.

Impedance Inversion (5 of 5)

Input Impedance is Z_0.

Input Impedance is Z_0.

Matched loads are always matched!

Matched loads are always matched!
Impedance Matching

Similar to the anti-reflection layer for waves, we can match a transmission line to a load impedance by inserting a quarter-wave section of a second transmission line.

\[Z_{in} = Z_0 \]

\[\beta_{at} = ? \]

\[Z_{at} = \sqrt{Z_0 Z_L} \]

\[z = -\frac{\lambda}{4} \]

\[z = 0 \]

We must perform an electromagnetic analysis of the transmission line to determine \(\beta_{at} \).

\[\beta_{at} \approx \omega \sqrt{\mu_0 \varepsilon_r} \]

\[\ell = \frac{\lambda}{4} = \frac{\pi}{2 \beta_{at}} \]
Example (1 of 3)

A 50 Ω microstrip line on FR-4 ($\varepsilon_r = 4.4$) operates at 2.4 GHz and is connected to patch antenna which has a 120 Ω input impedance. How much power is reflected? How can the circuit be improved?

Reflected Power:

$$\left| \Gamma \right|^2 = \left| \frac{Z_L - Z_0}{Z_L + Z_0} \right|^2 = \left(\frac{120 \Omega - (50 \Omega)}{120 \Omega + (50 \Omega)} \right)^2 = 0.4118^2 = 17\%$$

Example (2 of 3)

A 50 Ω microstrip line on FR-4 ($\varepsilon_r = 4.4$) operates at 2.4 GHz and is connected to patch antenna which has a 120 Ω input impedance. How much power is reflected? How can the circuit be improved?

Design:

$$Z_n = \sqrt{Z_L Z_0} = \sqrt{(120 \Omega)(50 \Omega)} = 77.5 \Omega$$

Perform an EM analysis to determine TL dimensions to get 50 Ω. For TEM mode,

$$\beta = \omega \sqrt{\mu \varepsilon} = \frac{2\pi f}{c_0} \sqrt{\mu \varepsilon} = \frac{2\pi (2.4 \times 10^8 \text{ s}^{-1})}{3.0 \times 10^8 \text{ m/s}} \sqrt{(1.0)(4.4)} = 105.44 \text{ rad/s}$$
A 50 Ω microstrip line on FR-4 (εᵣ = 4.4) operates at 2.4 GHz and is connected to patch antenna which has a 120 Ω input impedance. How much power is reflected? How can the circuit be improved?

Design: Given β, the length of the line should be

$$\beta \ell = \frac{\pi}{2} \implies \ell = \frac{\pi}{2\beta} = \frac{\pi}{2(105.44 \ \text{rad/s})} = 1.4898 \times 10^{-2} \ \text{m}$$

Stubs
What is a Stub? (1 of 3)

What do short circuits look like $\lambda/4$ away?

What is a Stub? (2 of 2)

What do short circuits look like $\lambda/4$ away? Open circuits!
The Shorted Stub is a Band Pass Filter

The circuit is actually shorted for all frequencies other than whatever frequency has wavelength λ inside the line. The short circuit blocks all signals.

At the frequency with wavelength λ, the circuit is not shorted and signals are allowed to pass.

Stubs in Practice

Multi Segment TL Devices
Scattering Parameters

Definition of a Scattering Matrix

The scattering matrix relates the amplitudes of the input waves to the amplitudes of the output waves.

\[
\begin{bmatrix}
V_1^- \\
V_2^- \\
\vdots \\
V_N^-
\end{bmatrix}
=
\begin{bmatrix}
S_{11} & S_{12} & \cdots & S_{1N} \\
S_{21} & S_{22} & \cdots & S_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
S_{N1} & S_{N2} & \cdots & S_{NN}
\end{bmatrix}
\begin{bmatrix}
V_1^+ \\
V_2^+ \\
\vdots \\
V_N^+
\end{bmatrix}
\]

\[S_{ij} = \frac{V_i^-}{V_j^+} \text{ for other applied voltages}\]

Any linear system can be reduced to a single scattering matrix that describes how it behaves.
S-Matrix for Two-Port Networks

\[
\begin{bmatrix}
\text{Output 1} \\
\text{Output 2}
\end{bmatrix} =
\begin{bmatrix}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{bmatrix}
\begin{bmatrix}
\text{Input 1} \\
\text{Input 2}
\end{bmatrix}
\]

- \(S_{11}\) is synonymous with reflection coefficient.
- \(S_{21}\) is synonymous with transmission coefficient.

Very often, engineers will say “\(S\)-1-1” instead of saying “reflection,” and say “\(S\)-2-1” instead of saying transmission.

Combining S-Matrices

Suppose there are two circuits, A and B, described by scattering matrices that placed in series. What is the scattering matrix of the combined network?

The answer is NOT matrix multiplication!!!

\[
\begin{bmatrix}
S_{11}^{(AB)} & S_{12}^{(AB)} \\
S_{21}^{(AB)} & S_{22}^{(AB)}
\end{bmatrix} \neq
\begin{bmatrix}
S_{11}^{(A)} & S_{12}^{(A)} \\
S_{21}^{(A)} & S_{22}^{(A)}
\end{bmatrix}\begin{bmatrix}
S_{11}^{(B)} & S_{12}^{(B)} \\
S_{21}^{(B)} & S_{22}^{(B)}
\end{bmatrix}
\]

Instead, it is a Redheffer star product.

\[
\begin{bmatrix}
S_{11}^{(AB)} & S_{12}^{(AB)} \\
S_{21}^{(AB)} & S_{22}^{(AB)}
\end{bmatrix} =
\begin{bmatrix}
S_{11}^{(A)} & S_{12}^{(A)} \\
S_{21}^{(A)} & S_{22}^{(A)}
\end{bmatrix} \otimes
\begin{bmatrix}
S_{11}^{(B)} & S_{12}^{(B)} \\
S_{21}^{(B)} & S_{22}^{(B)}
\end{bmatrix}
\]
Redheffer Star Product

\[
\begin{bmatrix}
S_{11}^{(AB)} & S_{12}^{(AB)} \\
S_{21}^{(AB)} & S_{22}^{(AB)}
\end{bmatrix}
= \begin{bmatrix}
S_{11}^{(A)} & S_{12}^{(A)} \\
S_{21}^{(A)} & S_{22}^{(A)}
\end{bmatrix}
\otimes \begin{bmatrix}
S_{11}^{(B)} & S_{12}^{(B)} \\
S_{21}^{(B)} & S_{22}^{(B)}
\end{bmatrix}
\]

\[
S_{11}^{(AB)} = \frac{S_{11}^{(A)} - S_{22}^{(A)} S_{11}^{(B)} S_{21}^{(B)} + S_{12}^{(A)} S_{21}^{(B)} S_{11}^{(B)}}{1 - S_{22}^{(A)} S_{11}^{(B)}}
\]

\[
S_{22}^{(AB)} = \frac{S_{22}^{(B)} - S_{11}^{(B)} S_{22}^{(A)} S_{12}^{(A)} + S_{21}^{(B)} S_{12}^{(A)} S_{22}^{(A)}}{1 - S_{22}^{(B)} S_{11}^{(B)}}
\]

\[
S_{12}^{(AB)} = \frac{S_{12}^{(A)} S_{12}^{(B)}}{1 - S_{22}^{(A)} S_{11}^{(B)}}
\]

\[
S_{21}^{(AB)} = \frac{S_{21}^{(A)} S_{21}^{(B)}}{1 - S_{22}^{(A)} S_{11}^{(B)}}
\]