Spatially-Variant Structures in Electromagnetics

Raymond C. Rumpf
Director, EM Lab
Associate Professor of Electrical and Computer Engineering
University of Texas at El Paso
rcrumpf@utep.edu
http://emlab.utep.edu

Presentation Outline

• Introduction
• Synthesis of spatially variant lattices
• New concepts and applications
 – Resonant grating on a curved surface
 – Spatially-variant self-collimation
 – Spatially-variant photonic crystal waveguides
 – Spatially-variant anisotropic metamaterials
• Conclusion
Design Process Using Spatial Transforms

Step 1 of 4:
Define Spatial Transform

Step 2 of 4:
Calculate Effective Material Properties

\[\nabla \times \vec{E} = -j\omega \mu \vec{H} \]
\[\nabla \times \vec{H} = j\omega \varepsilon \vec{E} \]
Design Process Using Spatial Transforms

Step 3 of 4:
Map Properties to Engineered Materials

http://emlab.utep.edu

Design Process Using Spatial Transforms

Step 4 of 4:
Generate Overall Lattice

http://emlab.utep.edu
What is a Spatially Variant Lattice?
What is a Spatially Variant Lattice?

Synthesis of Spatially-Variant Lattices
Start with Spatially-Variant Planar Gratings

Spatially-Variant Orientation
Spatially-Variant Fill Fraction
Spatially-Variant Period
Spatially-Variant Everything

Synthesis Procedure for Planar Gratings

Step 1 of 5:
Define Spatial Variance

Spatially-Variant Lattice Orientation
Spatially-Variant Lattice Spacing
Spatially-Variant Threshold
Step 2 of 5:
Calculate Spatially-Variant K-Function

$$\tilde{K}(\vec{r}) = \frac{2\pi}{\Lambda(\vec{r})} \left\{ \cos[\theta(\vec{r})] \hat{a} + \sin[\theta(\vec{r})] \hat{a}_r \right\}$$

Grating Vector \tilde{K}

Step 3 of 5:
Calculate Grating Phase

$$\nabla \Phi(\vec{r}) = \tilde{K}(\vec{r}) \quad \leftarrow \text{best fit}$$

$\cos[\tilde{K}(\vec{r}) \cdot \vec{r}]$

$\Phi(\vec{r})$
Synthesis Procedure for Planar Gratings

Step 4 of 5:
Calculate Analog SV Grating

$$\varepsilon_a(\vec{r}) = \cos[\Phi(\vec{r})]$$

Synthesis Procedure for Planar Gratings

Step 5 of 5:
Calculate Binary SV Grating

$$\varepsilon_b(\vec{r}) = \begin{cases} \varepsilon_{r_1} & \varepsilon_a(\vec{r}) < \gamma(\vec{r}) \\ \varepsilon_{r_2} & \varepsilon_a(\vec{r}) \geq \gamma(\vec{r}) \end{cases}$$
Generalization to Arbitrary Lattices

Unit Cell

FFT

K_x

K_y

Arrays of Discontinuous Metallic Elements

Spatially vary two planar gratings.
Arrays of Discontinuous Metallic Elements

Place metallic elements at the intersections.

http://emlab.utep.edu

Arrays of Discontinuous Metallic Elements

Final device.

http://emlab.utep.edu
Curved Metasurfaces

Spatially vary two planar gratings across a curved surface.

Curved Metasurfaces

Map surface slope to the metasurface element.
Curved Metasurfaces

Place elements at planar grating intersections.

Top View

3D View

Controlling Deformations

(a) basic algorithm
(b) 15 iterations of modified algorithm
(c) 40 iterations of modified algorithm

http://emlab.utep.edu
Compensating for Deformations

Lattice Spacing Deviation

Lattice without any compensation.

Lattice with fill fraction compensation

Resonant Grating on a Curved Surface
Guided-Mode Resonance

Highly Sensitive to Angle of Incidence

Spatially Vary Grating Period to Compensate for Curvature

All-Dielectric Metasurfaces

http://emlab.utep.edu
Spatially-Variant Photonic Crystals

Self-Collimation

- Beams do not diverge
- Beams follow the lattice
First Demonstration of Spatially-Variant Self-Collimation

- Manufactured by 3D printing
- Operated at 15 GHz

Spatially-Variant Self-Collimation for Photonics

- World’s tightest unguided bend ($R = 6.7\lambda_0$).
- Utilized very low refractive index (SU-8, $n \approx 1.59$).
- Operated at $\lambda_0 = 2.94 \, \mu m$.

Spatially-Variant Anisotropic Metamaterials

http://emlab.utep.edu
All-Dielectric Anisotropic Metamaterials

- All-dielectric
- Very low loss
- Ultra broadband
- Positive uniaxial

http://emlab.utep.edu

Microstrip Made Immune to Metal Object in Close Proximity

http://emlab.utep.edu
Conclusion

- SV tool is a necessary step for spatial transforms.
- SV tool enables new device concepts and applications.
 - Resonant grating on curved surfaces
 - Spatially-variant self-collimation
 - Spatially-variant photonic crystal waveguides
 - Spatially-variant anisotropic metamaterials

Acknowledgements

DARPA YFA N66001-11-1-415
W.M. Keck Center for 3D Innovation
University of Central Florida
nScrypt
DSM Somos
Virginia Tech Antenna Group
Prime Photonics

http://emlab.utep.edu