Lecture #0

Rules and Procedures

Outline

• The Textbook
• Grading
• Homework
• Exams
• MATLAB Codes
• Final Project
The Textbook

There is no official textbook for the class because no such textbook exists.

The “textbook” is therefore the course website.

http://emlab.utep.edu/ee5390cem.htm

Grading

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
<th>Grade Range</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>40%</td>
<td>90% – 100% → A</td>
<td></td>
</tr>
<tr>
<td>Midterm Exam #1</td>
<td>15%</td>
<td>80% – 89% → B</td>
<td></td>
</tr>
<tr>
<td>Midterm Exam #2</td>
<td>15%</td>
<td>70% – 79% → C</td>
<td></td>
</tr>
<tr>
<td>Final Project</td>
<td>20%</td>
<td>60% – 69% → D</td>
<td></td>
</tr>
<tr>
<td>Participation</td>
<td>10%</td>
<td>0% – 59% → F</td>
<td></td>
</tr>
</tbody>
</table>

HOMEWORK IS 40% OF YOUR FINAL GRADE!!!!!!!
Homework Rules

• Assigned on a weekly basis.
• Homework is very cumulative. It is not an option to miss a homework.
• Late Homework
 – -10% every day late.
 – Grade of zero after three days.
 – I need to distribute solutions as soon as possible.
• Homework is 40% of your final grade. The homework IS this class.
• Do your own work. Do not copy from other students.

Homework Format

• Must have a cover page.
 – Name, course information, assignment #, date, etc.
• Put problems in the proper order.
• Be neat and well organized.
• Providing computer codes is optional.
• **ALL CODES MUST GO INTO AN APPENDIX!**
• Construct homework as if you will need to relearn the material 10 years from now and have only your notes and homework.
• Stapled at upper-left corner with no additional binding.
Exams

• All exams are take-home.
• Exams follow the exact same format and rules as the homework.
• Cannot provide help on an exam.

Extra Credit?

No additional assignments will be given in this class for extra credit.

Extra credit is given in the following circumstances:

• You catch a mistake in the course materials.
• Your assignments go above and beyond what is asked.
Rules For Your MATLAB Codes

• You must use MATLAB for all homework and exams.
• Programs must follow the block diagrams in the class exactly.
• Codes must be neat, well organized, and well commented.
• Unless otherwise instructed, code must be a single program and NOT broken into separate functions.
• Try to use the same variable names as the notes and the instructor.
• Need help? If you are stuck and your codes follow ALL of the above rules, e-mail me your MATLAB code.
 – rcrumpf@utep.edu
 – Cannot provide help on exams.

Structure of the Ideal Code

Initialize MATLAB
- close all unnecessary windows
- clear memory
- open a figure window
- define units and constants

Dashboard
- Define what is to be learned
- Define source parameters
- Define device parameters
- Define method specific parameters

Rest of Code

Save/Show Results

Only numbers. No calculations!

Only calculations. No numbers!
The Final Project

• Purpose – to learn, practice, and share a topic outside of what was taught in class.
• Project should be summarized in Power Point.
 – Must be complete enough that another student from the class can reproduce your work if needed.
• Final Project = Final Exam
• Projects presented during the final exam period.
• May work alone or in teams, but teams must do proportionally more work.
• Must submit all electronic files to course instructor.
• No late projects will be accepted.
 • Get started early!!

Project Ideas

• Study a new device
 – Photonic crystals
 – Bragg gratings
 – Guided-mode resonance filters
 – Negative index metamaterials
 – Find band extreme away from key points of symmetry
 – Solve Shrödinger’s equation
 – Angle of reflection not equal to angle of incidence
• Implement a new method
 – Method of moments
 – Solve another differential equation (i.e. heat equation, etc.)
 – Finite element method
 – Waveguide analysis
 – Beam propagation method
 – Method of lines
 – Fourier-Space FDFD
 – Compare various methods on same device
 – Hybridize ROWA and MOL
• Add a feature to a method
 – FDFD for oblique coordinate system
 – Fix Gibbs’s phenomenon
 – Dielectric smoothing
 – Fast Fourier factorization
 – Incorporate model into optimization
 – Smart parameter sweep
 – Iterative solver (w/ fast seeded sweep)
 – Nonuniform or unstructured grid
 – Different language (Python, C, Fortran, etc.)
 – R/H/ETM matrices
 – SC-PML
 – Iterative FDFD
 – Parallelize a method
 – Optimize PML parameters
 – Higher-order accurate derivatives
 – Other boundary conditions
 – Analog layers in semi-analytical methods
 – Handle fully anisotropic materials
 – Calculate isofrequency contours
 – More efficient convmat()
 – Efficient convmat() for non-orthorhombic symmetries
 – Model a two-period device